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Preliminaries
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Planar graphs are measure treeable

Theorem (CGMT 2021) ‘ Pt ¥ ploer
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Let G C X be a locally finite Borel planar* graph.

Then for any Borel probability measure p on X,\G has a Borel subtreeing pi-a.e.
In particular, E¢ is treeable p-a.e. o
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Planar graphs

An accumulatlon point of a planar embedding  : (X, G) — R? is
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Theorem (Thomassen 1980)
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Planar groups are measure treeable

Theorem (CGMT 2021) Y r

Let G C X be a locally finite Borel planar graph.
Then for any Borel probability measure v on X, G has a Borel subtreeing u-a.e.
In particular, E¢ is treeable p-a.e.

Corollary (CGMT 2021) %ot beed (aedey (e vta
If T acts freely on a connected planar graph-with-equivariantembasis, then every free

Borel I-action is treeable pi-a.e. for every Borel probability measure .
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Surface groups

Let X be a closed orientable surface.

Its fundamental group 71(X)is T loys) /L-h def sned o, ahis! b a b ~'h) 7
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Every surface ¥ (except S2) is a free quotient ¥ /71 (¥) where ¥ = R,
Corollary (CGMT 2021)

Every free Borel action of w1(X) is treeable u-a.e.



Some other treeable groups

Theorem (CGMT 2021)

Let G C X be a locally finite Borel planar graph.
Then for any Borel probability measure 1w on X, G has a Borel subtreeing u-a.e.
In particular, Eg is treeable yi-a.e.

A group I is elementarily free if it is elementarily equivalent to F».
Corollary (CGMT 2021)
Every free Borel action of a f.g. elementarily free group is treeable u-a.e.

Proof uses an explicit construction of a space X with 7w1(X) =T
(Sela 2006, Guirardel-Levitt—Sklinos 2020).



Some other treeable groups

Theorem (CGMT 2021)

Let G C X be a locally finite Borel planar graph.
Then for any Borel probability measure 1w on X, G has a Borel subtreeing u-a.e.
In particular, Eg is treeable yi-a.e.

A group I is elementarily free if it is elementarily equivalent to F».
Corollary (CGMT 2021)
Every free Borel action of a f.g. elementarily free group is treeable u-a.e.

Proof uses an explicit construction of a space X with 7w1(X) =T
(Sela 2006, Guirardel-Levitt—Sklinos 2020).

Corollary (CGMT 2021)

Every free Borel action of Isom(HH?) is treeable ji-a.e.



Ends of graphs

Let G be a graphon X. Anend in G is “ \»

For each finite F C X, look at mo(G|(X \ F)) :=
For finite Fo € Fy C X,
The space of ends of (X, G) is 0G :=

If G is locally finite:
>
>
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One-ended spanning subforests

Let G C X? be a Borel graph. A one-ended spanning subforest is

Conjecture (CGMT 2021)

Let G C X? be a locally finite Borel graph with Eg pi-a.e. nonsmooth. TFAE:
(i) G is p-a.e. not 2-ended.

(i) G has a Borel one-ended spanning subforest pi-a.e.

>
> (CMT 2016)
> (CGMT 2021)



Cutting cycles along a one-ended subforest

Theorem (CGMT 2021)

Let G C X be a locally finite Borel planar graph.
Then for any Borel probability measure v on X, G has a Borel subtreeing u-a.e.

Proof idea:



Cutting cells in higher-dimensional complexes

Corollary (CGMT 2021)

For a compact surface ¥, every free Borel action of w1(X) is treeable u-a.e.

Theorem (CGMT 2021)

For a compact aspherical n-manifold M, every free Borel action of w1(M) admits a
“Borel family of contractible (n — 1)-dim’l simplicial complexes on each class”, up to
u-a.e. Borel reducibility.
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