"One-ended spanning subforests and treeability of groups" by Conley–Gaboriau–Marks–Tucker-Drob

Ronnie Chen

May 28, 2021

Preliminaries

Planar graphs are measure treeable

Planar graphs A graph G on vertices X is planar if \exists a planar embedding $f; X \hookrightarrow \mathbb{R}^{2}, \mathcal{E}$ fe: [0,1] => IR2 for each e= (x,y) cf, vhich has olisj. images except of endyts. fo (0)=x, felliday A facial cycle (e1,..., en) is a cycle vlore image under f is OK for a convected imp $K \circ f^{R^{2}} \setminus h(f)$ ► each edge belongs to at ust Z facial cycles ► the char firs of facial cycles are lin indep over 2/22 ► (if X is finite) they spon the char fas of all cycles over 2/22

A 2-basis in G is a family of cycles obying tuse 3 conditions.

Theorem (Mac Lane 1937) If X is finite, each 2-basis is the cert of facial cycles for some planer enhading.

Planar graphs

Theorem (CGMT 2021)

Let $G \subseteq X$ be a locally finite Borel planar graph. Then for any Borel probability measure μ on X, G has a Borel subtreeing μ -a.e. In particular, E_G is treeable μ -a.e.

Surface groups

(a, , b, ... , s. , b.) Let Σ be a closed orientable surface. aibioi's a braibi) [loops]/ its defaultion. Its fundamental group $\pi_1(\Sigma)$ is

Every surface Σ (except S^2) is a free quotient $\widetilde{\Sigma}/\pi_1(\Sigma)$ where $\widetilde{\Sigma} \cong \mathbb{R}^2$.

Corollary (CGMT 2021)

Every free Borel action of $\pi_1(\Sigma)$ is treeable μ -a.e.

Theorem (CGMT 2021)

Let $G \subseteq X$ be a locally finite Borel planar graph. Then for any Borel probability measure μ on X, G has a Borel subtreeing μ -a.e. In particular, E_G is treeable μ -a.e.

A group Γ is elementarily free if it is elementarily equivalent to $\mathbb{F}_2.$

Corollary (CGMT 2021)

Every free Borel action of a f.g. elementarily free group is treeable μ -a.e.

Proof uses an explicit construction of a space X with $\pi_1(X) \cong \Gamma$ (Sela 2006, Guirardel–Levitt–Sklinos 2020).

Theorem (CGMT 2021)

Let $G \subseteq X$ be a locally finite Borel planar graph. Then for any Borel probability measure μ on X, G has a Borel subtreeing μ -a.e. In particular, E_G is treeable μ -a.e.

A group Γ is elementarily free if it is elementarily equivalent to $\mathbb{F}_2.$

Corollary (CGMT 2021)

Every free Borel action of a f.g. elementarily free group is treeable μ -a.e.

Proof uses an explicit construction of a space X with $\pi_1(X) \cong \Gamma$ (Sela 2006, Guirardel–Levitt–Sklinos 2020).

Corollary (CGMT 2021)

Every free Borel action of $Isom(\mathbb{H}^2)$ is treeable μ -a.e.

Ends of graphs

For each finite $F \subseteq X$, look at $\pi_0(G|(X \setminus F)) :=$ For finite $F_0 \subseteq F_1 \subseteq X$,

The space of ends of (X, G) is $\partial G :=$

If G is locally finite:

One-ended spanning subforests

Conjecture (CGMT 2021)

Let $G \subseteq X^2$ be a locally finite Borel graph with $E_G \mu$ -a.e. nonsmooth. TFAE:

- (i) G is μ -a.e. not 2-ended.
- (ii) G has a Borel one-ended spanning subforest μ -a.e.

- ► (CMT 2016)
- ► (CGMT 2021)

Cutting cycles along a one-ended subforest

Theorem (CGMT 2021)

Let $G \subseteq X$ be a locally finite Borel planar graph. Then for any Borel probability measure μ on X, G has a Borel subtreeing μ -a.e.

Proof idea:

Cutting cells in higher-dimensional complexes

Corollary (CGMT 2021)

For a compact surface Σ , every free Borel action of $\pi_1(\Sigma)$ is treeable μ -a.e.

Theorem (CGMT 2021)

For a compact aspherical n-manifold M, every free Borel action of $\pi_1(M)$ admits a "Borel family of contractible (n - 1)-dim'l simplicial complexes on each class", up to μ -a.e. Borel reducibility.